
.
Computer Organization

A stored program computer behaves as different machines by
loading different programs, i.e., sequences of instructions.

• Computer hardware = registers + ALU + datapath (bus) +
control unit.control unit.
• The computer goes through instruction cycles:
i) Fetch an instruction from memory;
ii) Decode the instruction to a sequence of control signals;ii) Decode the instruction to a sequence of control signals;
iii) Execute the decoded sequence of microoperations.
• Control unit: Instruction a time sequence of control signals
to trigger microoperations.to trigger microoperations.
• Input-output is implemented using an interrupt cycle.

– Stored Program Organization :

Instruction Codes

• The simplest way to organize a computer
– One processor register : AC(Accumulator)

» The operation is performed with the memory operand and the » The operation is performed with the memory operand and the
content of AC

– Instruction code format with two parts : Op. Code + Address
» Op. Code : specify 16 possible operations(4 bit)» Op. Code : specify 16 possible operations(4 bit)
» Address : specify the address of an operand(12 bit)
» If an operation in an instruction code does not need an operand

from memory, the rest of the bits in the instruction(address field) from memory, the rest of the bits in the instruction(address field)
can be used for other purpose

– Memory : 12 bit = 4096 word(Instruction and Data are stored)
» Store each instruction code(program) and operand (data) in 16-» Store each instruction code(program) and operand (data) in 16-

bit memory word

–Addressing Mode

•Immediate operand address : •Immediate operand address :

–the second part of instruction code(address field) specifies
operand

•Direct operand address :

–the second part of instruction code specifies the address of
operandoperand

•Indirect operand address :

–the bits in the second part of the instruction designate an
address of a memory word in which the address of the address of a memory word in which the address of the
operand is found (Pointer)

•One bit of the instruction code is used to distinguish between a
direct and an indirect address :direct and an indirect address :

• Effective address: Address where an operand is physically located

Direct AddressingDirect Addressing
IR 1 1 0 1 0 1 0 1 1 0 0 1

Occurs When the Operand Part
Contains the Address of Needed Data.

1. Address part of IR is placed on
the bus and loaded back into the AR 0 1 0 1 1 0 0 1the bus and loaded back into the
AR

AR 0 1 0 1 1 0 0 1

Memory2. Address is selected in memory
and its Data placed on the bus to be
loaded into the Data Register to be loaded into the Data Register to be
used for requested instructions

DR 0 0 0 0 0 0 0 0 1 1 1 1

Indirect Addressing

IR 1 1 0 1 0 1 0 1 1 0 0 1
Occurs When the Operand Contains the
Address of the Address of Needed Data.

1. Address part of IR is placed on
the bus and loaded back into the
AR

AR 0 1 0 1 1 0 0 11 0 1 1 1 0 1 1

Memory
2. Address is selected in memory
and placed on the bus to be loaded
Back into the ARBack into the AR

3. New Address is selected in
memory and placed on the bus to
be loaded into the DR to use later

DR 0 0 0 0 0 0 0 0 0 1 0 1

be loaded into the DR to use later

Direct and Indirect addressing example

Data Register(DR) : hold the operand(Data) read from memory

Computer Registers

Data Register(DR) : hold the operand(Data) read from memory

Accumulator Register(AC) : general purpose processing register

Instruction Register(IR) : hold the instruction read from memory

Temporary Register(TR) : hold a temporary data during processing

Address Register(AR) : hold a memory address, 12 bit width

Program Counter(PC) : Program Counter(PC) :

»hold the address of the next instruction to be read from memory
after the current instruction is executed

»Instruction words are read and executed in sequence unless a
branch instruction is encountered

»A branch instruction calls for a transfer to a nonconsecutive »A branch instruction calls for a transfer to a nonconsecutive
instruction in the program

»The address part of a branch instruction is transferred to PC to
become the address of the next instructionbecome the address of the next instruction

»To read instruction, memory read cycle is initiated, and PC is
incremented by one(next instruction fetch)

Input Register(INPR) : receive an 8-bit character from an
input deviceinput device

Output Register(OUTR) : hold an 8-bit character for an
output device

The following registers are used in Mano’s example computer.
output device

Register Number Register Register
symbol of bits name Function-----------------------
DR 16 Data register Holds memory operandsDR 16 Data register Holds memory operands
AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register
IR 16 Instruction register Holds instruction code
PC 12 Program counter Holds address of instruction
TR 16 Temporary register Holds temporary data
INPR 8 Input register Holds input character
OUTR 8 Output register Holds output characterOUTR 8 Output register Holds output character

Bus
s1 s2s0

7

16 bit Common Bus system
Memory Unit

WRITE
Address

AR

7

1
READ

Memory Unit
4096x16

LD INR CLR

LD INR CLR

DR

PC 2

3

LD INR CLR

LD INR CLR

Adder
& Logic

E

DR 3

4AC

IR

INPR

LD INR CLR

5

LD

LD

INR
OUTR

CLR

6TR

16-bit common bus

ClockLD

OUTR

The basic computer has eight registers, a memory unit, and a
control unit.

Common Bus System

control unit.

Paths must be provided to transfer information from one register
to another and between memory and registersto another and between memory and registers

A more efficient scheme for transferring information in a system
with many registers is to use a common bus.

The connection of the registers and memory of the basic
computer to a common bus system.

»The outputs of seven registers and memory are connected to »The outputs of seven registers and memory are connected to
the common bus

»The specific output is selected by mux(S0, S1, S2) :

Memory(7), AR(1), PC(2), DR(3), AC(4), IR(5), TR(6)

When LD(Load Input) is enable, the particular register
receives the data from the bus receives the data from the bus

»Control Input : LD, INC, CLR, Write, Read

COMMON BUS SYSTEM
• Control variables: Various control variables are used to select:
i) the paths of information; & i) the paths of information; &
ii) the operation of the registers.
 Selection variables: Used to specify a register whose output is connected to

the common bus at any given time. the common bus at any given time.
 To select one register out of 8, we need 3 select variables.
 For example, if S2S1S0 = 011, the output of DR is directed to the common

bus.bus.
> Load input (LD): Enables the input of a register connected to the common

bus. When LD = 1 for a register, the data on the common bus is read into the
register during the next clock pulse transition.register during the next clock pulse transition.

> Increment input (INR): Increments the content of a register.
> Clear input (CLR): Clear the content of a register to zero.
• When the contents of AR or PC (12 bits) are applied to the 16-bit common bus,

the four most significant bits are set to zero. When AR or PC receives the four most significant bits are set to zero. When AR or PC receives
information from the bus, only the 12 least significant bits are transferred to
the register. Both INPR and OUTR use only the 8 least significant bits of
the bus.the bus.

•

5-3. Computer Instruction
•

– 3 Instruction Code Formats :
•Memory-reference instruction

–Opcode = 000 110

Hex Code

Symbol I = 0 I = 1 Description

AND 0xxx 8xxx And memory word to AC

ADD 1xxx 9xxx Add memory word to AC

LDA 2xxx Axxx Load memory word to AC–Opcode = 000 110
»I=0 : 0xxx ~ 6xxx, I=1: 8xxx ~Exxx

I Opcode Address

15 14 12 11 0I=0 : Direct,
I=1 : Indirect

LDA 2xxx Axxx Load memory word to AC

STA 3xxx Bxxx Store content of AC in memory

BUN 4xxx Cxxx Branch unconditionally

BSA 5xxx Dxxx Branch and Save return address

ISZ 6xxx Exxx Increment and skip if zero

CLA 7800 Clear AC

»Register-reference instruction
–7xxx (7800 ~ 7001) : CLA, CMA,

I Opcode Address CLA 7800 Clear AC

CLE 7400 Clear E

CMS 7200 Complement AC

CME 7100 Comp le m e nt E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E
–7xxx (7800 ~ 7001) : CLA, CMA,

–Input-Output instruction

0 1 1 1 Register Operation

15 14 12 11 0
CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instruction if AC positive

SNA 7008 Skip next instruction if AC negative

SZA 7004 Skip next instruction if AC zero

SZE 7002 Skip next instruction if E is 0–Input-Output instruction
–Fxxx(F800 ~ F040) : INP, OUT, ION, SKI,

15 14 12 11 0

SZE 7002 Skip next instruction if E is 0

HLT 7001 Halt computer

INP F800 Input character to AC

OUT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

1 1 1 1 I/O Operation ION F080 Interrup t O n

IOF F040 Inter ru p t O f fReading this table:
the presented code is for any instruction that has 16 bits. The xxx represents don’t care (any data for the first 12 bits). Example 7002 for is a
hexadecimal code equivalent to 0111 0000 0000 0010 Which means B1 (Bit 1) is set to 1 and the rest of the first 12 bits are set to zeros.

•• Instructions are normally stored in consecutive memory locations
and are executed sequentially one at a time. and are executed sequentially one at a time.
•The program counter (PC) holds the address of the next
instruction to be read from memory after the current instruction is
executed. executed.
•The PC has 12 bits like the AR.
•The instruction read from memory is placed in the instruction
register (IR) which has 16 bits corresponding to our instruction code register (IR) which has 16 bits corresponding to our instruction code
length.
• Most processing takes place in the accumulator (AC); • Most processing takes place in the accumulator (AC);
•the temporary register (TR) is used for holding temporary data
during the processing.
• The input (INPR) and output (OUTR) registers hold a character • The input (INPR) and output (OUTR) registers hold a character
at a time which is read from an input device or to be printed to an
output device, respectively. Using the ASCII code, one character is
represented with 8 bits (1 byte). represented with 8 bits (1 byte).

Timing and Control
• Microprogrammed Control :

– The control information is stored in a control memory, and the control memory
is programmed to initiate the required sequence of microoperations

– + Any required change can be done by updating the microprogram in control – + Any required change can be done by updating the microprogram in control
memory, - Slow operation

15 14 13 12 11 - 0

Instruction register (IR)

– Control Unit
• Control Unit = Control Logic Gate + 3

3×8
decoder

7 6 5 4 3 2 1 0

I D0

Other inputs

ControlD7

.

.

.

• Control Unit = Control Logic Gate + 3
X 8 Decoder + Instruction Register +
Timing Signal

• Timing Signal = 4 X 16 Decoder + 4-
Control
logic
gates

15 14 1 0

Control
outputs

T0

T15

D7 .

.

.

.

. . .

. . .

• Timing Signal = 4 X 16 Decoder + 4-
bit Sequence Counter

• Example) Control timing
– Sequence Counter is cleared when 15 14 1 0

4×16
decoder

4-bit
sequence

Increment(INR)

Clear(CLR)

. . .– Sequence Counter is cleared when
D3T4 =1 :

• Memory R/W cycle time > Clock cycle
time

0:43 SCTD

sequence
counter

(SC)

Clear(CLR)

Clock

time

CONTROL UNIT HARDWARE
• Inputs to the control unit come from IR where an instruction read from the memory
unit is stored.
• A hardwired control is implemented in the example computer using:
> A 3 ´ 8 decoder to decode opcode bits 12-14 into signals D0, ..., D7;
> A 4-bit binary sequence counter (SC) to count from 0 to 15 to achieve time > A 4-bit binary sequence counter (SC) to count from 0 to 15 to achieve time
sequencing;
> A 4 ´ 16 decoder to decode the output of the counter into 16 timing signals, T0, ...,
T15 T15
> A flip-flop (I) to store the addressing mode bit in IR;
> A digital circuit with inputs—D0, ..., D7, T0, ..., T15, I, and address bits (11-0) in
IR—to generate control outputs supplied to control inputs and select signals of the IR—to generate control outputs supplied to control inputs and select signals of the
registers and the bus.
• Clocking principle: The binary counter goes through a cycle, 0000 0001 0010
... 1111 0000. Accordingly only one of T0, ..., T15 is 1 at each clock cycle, T0 ... 1111 0000. Accordingly only one of T0, ..., T15 is 1 at each clock cycle, T0
T1 T2 ... T15 T0; all the other timing signals are 0.
• By setting the clear input (CLR) of SC at a clock cycle, say T3, we can achieve a 4-
cycle clock: T0 T1 T2 T3 T0.

Instruction Cycle
• A computer goes through the following instruction cycle repeatedly:• A computer goes through the following instruction cycle repeatedly:
do
1. Fetch an instruction from memory
2. Decode the instruction2. Decode the instruction
3. Read the effective address from memory if the instruction
has an indirect address
4. Execute the instruction until a HALT instruction is 4. Execute the instruction until a HALT instruction is
encountered
• The fetch & decode phases of the instruction cycle consists of the
following microoperations synchronized with the timing signals following microoperations synchronized with the timing signals
(clocking principle).

Timing signal microoperations
T0: AR PC
T1: IR M[AR], PC PC + 1
T2: D0, ..., D7 Decode IR(12-14), AR IR(0-11), I IR(15)T2: D0, ..., D7 Decode IR(12-14), AR IR(0-11), I IR(15)

T0: Since only AR is connected to the address inputs of memory, the address of
instruction is transferred from PC to AR.
1. Place the content of PC onto the bus by making the bus selection inputs S2S1S0
= 010.
2. Transfer the content of the bus to AR by enabling the LD input to AR
(AR PC).(AR PC).
T1: The instruction read from memory is then placed in the instruction register IR.
At the same time, PC is incremented to prepare for the address of the next
instruction.instruction.
1. Enable the read input of the memory.
2. Place the content of memory onto the bus by making the bus selection inputs
S2S1S0 = 111. (Note that the address lines are always connected to AR, and we S2S1S0 = 111. (Note that the address lines are always connected to AR, and we
have already placed the next instruction address in AR.)
3. Transfer the content of the bus to IR by enabling the LD input to IR

(IR M[AR]).(IR M[AR]).
4. Increment PC by enabling the INR input of PC (PC PC + 1).
T2: The operation code in IR is decoded; the indirect bit is transferred to I; the
address part of the instruction is transferred to AR. (See the common bus skeleton
diagram.)diagram.)

Similar circuits are used to realize the microoperations at T2.
• At T3, microoperations which take place depend on the type of • At T3, microoperations which take place depend on the type of
instruction. The four different paths are symbolized as follows, where
the control functions must be connected to the proper inputs to
activate the desired microoperations. activate the desired microoperations.

Control function Microoperation
D7’IT3: AR M[AR], indirect memory transferD7’IT3: AR M[AR], indirect memory transfer
D7’I’T3: Nothing, direct memory transfer
D7I’T3: Execute a register-reference instruction
D7IT3: Execute an I/O D7IT3: Execute an I/O
instruction

When D7’T3 = 1 (At T3 & IR(12-14) 111), the execution of memory-reference When D7’T3 = 1 (At T3 & IR(12-14) 111), the execution of memory-reference
instructions takes place with the next timing variable T4.

Figure: Control
circuit for
instruction fetch.
This is a part of the
control circuit and
demonstrates the demonstrates the
kind of wiring
needed.

REGISTER-REFERENCE INSTRUCTIONS
• The 12 register-reference instructions are recognized by I = 0 and • The 12 register-reference instructions are recognized by I = 0 and
D7 = 1 (IR(12-14) = 111). Each operation is designated by the
presence of 1 in one of the bits in IR(0-11). Therefore D7I’T3 r = 1
is common to all register-transfer instructions.is common to all register-transfer instructions.

Memory Reference Instructions
• Opcode (000 - 110) or the decoded output Di (i = 0, ..., 6) are used to • Opcode (000 - 110) or the decoded output Di (i = 0, ..., 6) are used to
select one memory-reference operation out of 7.

Memory Reference Instruction

– STA : memory write

– BUN : branch unconditionally
0,][:43 SCACARMTD

0 BSA 135
next instruction

PC = 10
PC = 21– BUN : branch unconditionally

– BSA : branch and save return address
0,:44 SCARPCTD

1,][:45 ARARPCARMTD

21(return address)

Subroutine

PC = 21

135
PC = 136

• Return Address : save return address (135 21)
• Subroutine Call : Fig. 5-10

0,:
1,][:

55

45

SCARPCTD
ARARPCARMTD

1135)(136),(21]135[:45 ARPCMTD

1 BUN 135

• Subroutine Call : Fig. 5-10
– ISZ : increment and skip if zero 0),(136)(136:

1135)(136),(21]135[:

55

45

SCARPCTD
ARPCMTD

1:
][:

56

46

DRDRTD
ARMDRTD

– Control Flowchart :
• Flowchart for the 7 memory reference instruction

0),1()0(,][:
1:

66

56

SCPCPCthenDRifDRARMTD
DRDRTD

• Flowchart for the 7 memory reference instruction
– The longest instruction : ISZ(T6)
– 3 bit Sequence Counter

Branch and Save Address (BSA)

Subroutine implementation using BSA.

• 5-7 Input-Output and Interrupt

Input-Output and Interrupt
• 5-7 Input-Output and Interrupt

– Input-Output Configuration : Fig. 5-12
• Input Register(INPR), Output Register(OUTR)

– These two registers communicate with a communication interface
serially and with the AC in parallelserially and with the AC in parallel

– Each quantity of information has eight bits of an alphanumeric code
• Input Flag(FGI), Output Flag(FGO)

– FGI : set when INPR is ready, clear when INPR is empty– FGI : set when INPR is ready, clear when INPR is empty
– FGO : set when operation is completed, clear when output device is

in the process of printing
– Input-Output Instruction : Tab. 5-5

1 : Ready
0 : Not ready

– Input-Output Instruction : Tab. 5-5
• p = D7IT3
• IR(i) = Bi IR(6 -11)
 B6 - B11 : 6 I/O Instruction

Address

6 11
– Program Interrupt

• I/O Transfer Modes
– 1) Programmed I/O, 2) Interrupt-initiated I/O, 3) DMA, 4) IOP
– 2) Interrupt-initiated I/O (FGI FGO 1 Int.)– 2) Interrupt-initiated I/O (FGI FGO 1 Int.)
– Maskable Interrupt (ION IOF Int. mask)

• Interrupt Cycle : Fig. 5-13
– During the execute phase, IEN is checked by the control

» IEN = 0 : the programmer does not want to use the interrupt,
so control continues with the next instruction cycle

» IEN = 1 : the control circuit checks the flag bit, If either flag
set to 1, R (R is the interrupt flip flop) is set to 1set to 1, R (R is the interrupt flip flop) is set to 1

– At the end of the execute phase, control checks the value of R
» R = 0 : instruction cycle
» R = 1 : Interrupt cycle» R = 1 : Interrupt cycle

• Demonstration of the interrupt cycle : Fig. 5-14
– The memory location at address 0 as the place for storing the return

address
– Interrupt Branch to memory location 1
– Interrupt cycle IEN=0 (ISR Interrupt ION)

• The condition for R = 1
256(return address)

0 BUN 1120
Main Program

0
PC = 1

• Modified Fetch Phase
– Modified Fetch and Decode Phase

Save Return

1:))(('2
'

1
'

0 RFGOFGIIENTTT
Main Program

Interrupt

255
256

1120

Interrupt
Here

Save Return
Address(PC) at 0

0,0,0,1:
0,][:

,0:

2

1

0

SCRIENPCPCRT
PCTRARMRT
PCTRARRT

Jump to 1(PC=1)

Interrupt
Service Routine

1 BUN 0

1120

R

Fetch and decode

=0 =1Instruction cycle Interrupt cycle

Fetch and decode
instruction

Execute IEN

Store return address
in location 0
M[0] PC

=0
Execute

instruction

FGI

IEN

Branch to location 1
PC 1

=1

=1 FGI

FGO
IEN 0
 R 0

=0

=1 FGO R 0

 R 1

=0

 R 1

• Two basic things are needed: data paths and control signals

Design of Basic Computer
• Two basic things are needed: data paths and control signals
• A hardwired-control implementation: Stitch together the individual
pieces of the data path.
• The microoperation table provides sufficient information to • The microoperation table provides sufficient information to
implement the circuits for control (wiring various gates).

Input:
1. D0 - D7: Decoded IR(14-12)
2. T0 - T15 : Timing signals2. T0 - T15 : Timing signals
3. I: Indirect signal
4. IR(0-11)
Output:Output:
1. Control inputs of the nine registers, AR, PC, DR, AC, IR, TR, OUTR, INPR, SC
2. Read and write inputs of memory
3. Signals to set, clear, or complement the flip-flops, IEN, R, etc.3. Signals to set, clear, or complement the flip-flops, IEN, R, etc.
4. Select signals, S2, S1, S0, for common bus
5. Control signals to the AC adder and logic circuit
CONTROL OF REGISTERS AND MEMORYCONTROL OF REGISTERS AND MEMORY
Systematic Design Procedure
1. For a given register, scan the table of microoperations in the previous slides to
find all the statements involving that gate.
2. Translate the associated control functions to Boolean functions.2. Translate the associated control functions to Boolean functions.
3. Convert the Boolean expressions into logic gates.

Example: Control of AR
1. The following is the summary of the register transfers associated 1. The following is the summary of the register transfers associated
with the address register.
R’T0: AR PC load
R’T2: AR IR(0-11) loadR’T2: AR IR(0-11) load
D7’IT3: AR M[AR] load
RT0: AR 0 clear
D5T4: AR AR + 1 incrementD5T4: AR AR + 1 increment
2. The control functions can be combined into the following Boolean
expressions.expressions.
LD(AR) = R’T0 + R’T2 + D7’IT3
CLR(AR) = RT0
INR(AR) = D5T4INR(AR) = D5T4

3. The previous Boolean expressions can be converted to the
following logic gates.following logic gates.

• In a similar fashion, the control gates for the other registers and memory can be
derived. For example, the logic gates associated with the read input of memory is
derived by scanning the microoperation table to find the statements that specify a derived by scanning the microoperation table to find the statements that specify a
read operation. The read operation is recognized from the symbol M[AR].
Read = R’T1 + D7’IT3 + (D0 + D1 + D2 + D3)T4

– Register Control : AR

Design of Basic Computer
• Control inputs of AR : LD, INR, CLR
• Find all the statements that change the AR

in Table. 5-6
AR

LD
D'7

Clock
CLRINR

To BusFrom Bus
12 12

I
?AR

• Control functions
T2

T3
I

R

T

D5

T0

?AR

0:
][:'
)110(:'

:'

37

1

0

ARRT
ARMARITD

IRARTR
PCARTR

0

3710

)(
''')(

RTARCLR
ITDTRTRARLD

– Memory Control : READ
• Control inputs of Memory : READ, WRITE

T4

1:
0:

45

0

ARARTD
ARRT

45

0

)(
)(

TDARINR
RTARCLR

?][ARM

• Find all the statements that specify a read operation in Table. 5-6
• Control function

][? ARM

43210371)('' TDDDDITDTRREAD J K
0 1

Q(t+1)
0

– F/F Control : IEN
• Control functions

?IEN

0:
1:7

IENpB
IENpB

T3

D'7
I

B7

Clock

J

Q

Q

K

SET

CLR

IEN

p

B6

0 1
1 0 1

0

0:
0:

2

6

IENRT
IENpB R

T2

CLR

– Bus Control

Design of Basic Computer
– Bus Control

• Encoder for Bus Selection : Table. 5-7
– S0 = x1 + x3 + x5 + x7
– S1 = x2 + x3 + x6 + x7 x1 = 1 corresponds to the bus connection of AR as a source 1 2 3 6 7
– S0 = x4 + x5 + x5 + x7

• x1 = 1 :
–

ARFindARBus ?

ARPCTD :44 Multiplexer

x1
x2
x S0

x1 = 1 corresponds to the bus connection of AR as a source

– Control Function :
• x = 1 :

ARPCTD
ARPCTD

:
:

55

44

55441 TDTDx

PCFindPCBus ?

Encoder
Multiplexer
Bus Select

Input

x3
x4
x5
x6
x7

S0

S1

S2

• x2 = 1 : PCFindPCBus ?

][? ARMFindMemoryBus “

“

• x7 = 1 :
– Same as Memory Read
– Control Function :

432103717)('' TDDDDITDTRx

– Control Function :
–

• Design of Accumulator Logic

Design of Accumulator Logic
• Design of Accumulator Logic

– Circuits associated with AC

16

Adder and
logic
circuit

Accumulator
register

(AC)
From DR

To Bus
From INPR

16 16 16

8

INRLD CLR Clock

Control
gates

Control of AC : Fig. 5-20

Design of Accumulator Logic
Control of AC : Fig. 5-20

• Find the statement that change the AC : ?AC

From adder
16 16

: DRACACTD

AC

LD

T5

D0

Clock
CLRINR

To Bus
From adder
and logic

16 16

AND

)70(:
:
:
:

11

52

51

50

INPRACpB
DRACTD

DRACACTD
DRACACTD

p

D1

T5

D2

INPR

DR

ADD

LD

0:
)0(,:
)15(,:

:

6

7

9

11

ACrB
EACACshrACrB
EACACshrACrB

ACACrB
p

B11

r

B9

B

COM

INPR

SHR

CLR

1:
0:

5

11

ACACrB
ACrB

B5

B6

B7

INC

SHLINR

CLR

B5

B11

CLR

Design of Accumulator Logic
– Adder and Logic Circuit : Fig. 5-21 (16 bit)

DR(i) AC(i)

AND LD

(Output of OR gate in Fig. 5-20)

C

J K
0 1
1 0 1

Q(t+1)
0

DR

ADD

FA
J Q

K

(Fig.2-11)Ii AC(i)

Ci+1

C i
1 0 1

COM

INPR

Clock
From
INPR
bit(i) Increment, Clear,

Count

SHL

SHR

AC(i-1)

AC(i+1)

