Computer Organization

A stored program computer behaves as different machines by
loading different programs, 1.e., sequences of instructions.

control signals
_ L, INR, CLE for registers
-'"W-:urdpr::-ceasmg 82, 81, &80 for bus
prograEm read, write for memory
RLU
Spread sheet
program control = reglaters
combinatorial
= i cilrcuit Memory
datapath (busa)
A
i lnstructicon
Word processing
data 1 [1]o7-Do] 1RM11-0) |
B11-B0 for register & I/C state
, AR for memory R, IEN, FGI, F30
wWord processing
data z T1c-TD
timing aignals

Figure: Stored program computer concept. Figure: Stored program computer hardware.

« Computer hardware = registers + ALU + datapath (bus) +

control unit.

* The computer goes through instruction cycles:

1) Fetch an instruction from memory;
11) Decode the instruction to a sequence of control signals;
111) Execute the decoded sequence of microoperations.

* Control unit: Instruction — a time sequence of control signals
to trigger microoperations.
e Input-output 1s implemented using an interrupt cycle.

CET
Registers Mlcrooperations Memory
Cperands w0 el O O O operands
- - - - Operands
arithmetic B (data)
Result logic unit Result
LATIT
Contro 1751 gnals Inetruct ions
Control | g (program)
unit
Instruction

Ccodes

Instruction Codes

— Stored Program Organization :
* The simplest way to organize a computer
— One processor register : AC(Accumulator)

» The operation 1s performed with the memory operand and the
content of AC

— Instruction code format with two parts : Op. Code + Address
» Op. Code : specify 16 possible operations(4 bit)
» Address : specify the address of an operand(12 bit)

» If an operation in an instruction code does not need an operand
from memory, the rest of the bits in the instruction(address field)
can be used for other purpose

— Memory : 12 bit= 4096 word(Instruction and Data are stored)

» Store each instruction code(program) and operand (data) in 16-
bit memory word

—Addressing Mode
Immediate operand address :

—the second part of instruction code(address field) specifies
operand

*Direct operand address :

—the second part of instruction code specifies the address of
operand

Indirect operand address :

—the bits in the second part of the instruction designate an
address of a memory word in which the address of the
operand is found (Pointer)

*One bit of the instruction code 1s used to distinguish between a
direct and an indirect address :

 Effective address: Address where an operand 1s physically located

Direct Addressing

Occurs When the Operand Part
Contains the Address of Needed Data. IR 1 1 O 1 O 1 O 1 1 0 O 1

1. Address part of IR 1s placed on

il; bus and loaded back into the AR 01011001
|

4

A 4

Memory

2. Address 1s selected in memory
and 1ts Data placed on the bus to be
loaded into the Data Register to be
used for requested instructions

DR 1000000001111

Indirect Addressing

Occurs When the Operand Contains the

Address of the Address of Needed Data. IR 110101011001

1. Address part of IR 1s placed on

the bus and loaded back into the AR
AR

2. Address 1s selected in memory
and placed on the bus to be loaded
Back into the AR

3. New Address 1s selected in
memory and placed on the bus to
be loaded into the DR to use later

DR

10111011

A 4

Memory

A

000000000101

Direct and Indirect addressing example

1= 14 1= 11 (]
I) -l L = Sddress

Instcruction £formatc

ITn=triacticon Mo T Yy

= (B SaTaTS g & °F A 1 STaTS 200

200 1=50

adC 7 O aricd

1==0 e ariad

--[;:I -—[33
F X o,

TDiract addre=s=s Indirect oddress

Computer Registers

Data Register(DR) : hold the operand(Data) read from memory
Accumulator Register(AC) : general purpose processing register
Instruction Register(/R) : hold the instruction read from memory
Temporary Register(TR) : hold a temporary data during processing
Address Register(AR) : hold a memory address, 12 bit width
Program Counter(PC) :

»hold the address of the next instruction to be read from memory
after the current instruction is executed

»Instruction words are read and executed in sequence unless a
branch instruction is encountered

»A branch instruction calls for a transfer to a nonconsecutive
instruction in the program

» The address part of a branch instruction is transferred to PC to
become the address of the next instruction

»To read instruction, memory read cycle is initiated, and PC is
incremented by one(next instruction fetch)

Input Register(INPR) : receive an 8-bit character from an
iInput device

Output Register(OUTR) : hold an 8-bit character for an

output device

The following registers are used in Mano’s example computer.

Register Number_ Register Register

symbol of bits name Function

DR 16 Data register Holds memory operands
AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction register Holds instruction code

PC 12 Program counter Holds address of instruction
TR 16 Temporary register Holds temporary data

INPR 8 Input register Holds input character
OUTR 8 Output register Holds output character

16 bit Common Bus system

ojl_ﬁzz

Bus

\4
N

A 2
o

v
K

\ 4
W

\ 4
=

Memory Unit
4096x16 <
I T Address
WRITE READ
> AR A
LD INR CLR ———
> PC A
T T | |
LD INR CLR P
> DR A
I | I
LD INR CLR —
‘_Z Adder 5
» & Logic , | AL , A|
LD INR CLR I
INPR
> IR A
LD I
> TR A
T T T |
LD INR CLR I
> OUIR ,
T |
LD Clock

<«— 16-bit common bus «——

Common Bus System

e The basic computer has eight registers, a memory unit, and a
control unit.

ePaths must be provided to transfer information from one register
to another and between memory and registers

oA more efficient scheme for transferring information in a system
with many registers is to use a common bus.

e The connection of the registers and memory of the basic
computer to a common bus system.

» The outputs of seven registers and memory are connected to
the common bus

» The specific output is selected by mux(S0, S1, S2):
sMemory(7), AR(1), PC(2), DR(3), AC(4), IR(5), TR(6)

s\When LD(Load Input) is enable, the particular register
receives the data from the bus

»Control Input : LD, INC, CLR, Write, Read

COMMON BUS SYSTEM

 Control variables: Various control variables are used to select:

1) the paths of information; &

11) the operation of the registers.

» Selection variables: Used to specify a register whose output is connected to
the common bus at any given time.

» To select one register out of 8, we need 3 select variables.

» For example, if S2S1S0 = 011, the output of DR is directed to the common
bus.

> Load input (LD): Enables the input of a register connected to the common
bus. When LD =1 for a register, the data on the common bus 1s read into the
register during the next clock pulse transition.

> Increment input (INR): Increments the content of a register.

> Clear input (CLR): Clear the content of a register to zero.

* When the contents of AR or PC (12 bits) are applied to the 16-bit common bus,
the four most significant bits are set to zero. When AR or PC receives
information from the bus, only the 12 least significant bits are transferred to
the register. Both INPR and OUTR use only the 8 least significant bits of
the bus.

5-3. Computer Instruction

(]
— 3 Instruction Code Formats : Hex Code
Symbol =0 [=1 Description
. Memory-reference mstruction . AND 0o Box And memory word to AC
ADD Txxx 9xxx Add memory word to AC
—Opcode — OOO ~ 1 10 LDA 2600 AXXX Load memory word to AC
1 STA 3xxx Bxxx Store content of AC in memory
»[=0 : 0xxX ~ 6XXX, I=1: 8xxx ~Exxx BUN Axxx - Oxxx Branch unconditionally
[I=0 : Direct, 15 14 0 11 0 \ BSA 5xxx Dxxx Branch and Save return address
I=1 : Indirect —~F ISZ pxxx Exxx Increment and skip if zero
I | Opcode Address CLA 7800 Clear AC
[o 7400 Clear E
. . . CMS 7200 Complement AC
»Register-reference instruction OVE m 7100 e Comp
. CR 7080 Circulate right AC and E
—7xxx (7800 ~ 7001) : CLA, CMA, { 7040 Circulate left AC and E
15 14 12 11 0 INC 7020 Increment AC
. . SPA 7010 Skip next instruction if AC positive
I Reel oioncai] SNA 7008 Skip next instruction if AC negative
\ SZA 7004 Skip next instruction if AC zero
_Input_output iIlStI'U.CtiOIl SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer
—FXXX(F800 ~ FO40) : INP, OUT, ION, SK . INP F800 Input character to AC
ouT F400 Qutput character from AC
15 14 - 0 SK F200 Skip on input flag
SKO F100 Skip on output flag
{1 1 1 I/O Operation ION F080 Interrup
Reading this table: IOF F040 Inter

the presented code is for any instruction that has 16 bits. The xxx represents don’t care (any data for the first 12 bits). Example 7002 for is a
hexadecimal code equivalent to 0111 0000 0000 0010 Which means B, (Bit 1) is set to 1 and the rest of the first 12 bits are set to zeros.

e« [nstructions are normally stored in consecutive memory locations
and are executed sequentially one at a time.

*The program counter (PC) holds the address of the next
instruction to be read from memory after the current instruction 1s
executed.

*The PC has 12 bits like the AR.

*The instruction read from memory 1s placed in the instruction
register (IR) which has 16 bits corresponding to our instruction code
length.

» Most processing takes place in the accumulator (AC);

the temporary register (TR) is used for holding temporary data
during the processing.

* The input (INPR) and output (OUTR) registers hold a character
at a time which 1s read from an input device or to be printed to an
output device, respectively. Using the ASCII code, one character 1s
represented with 8 bits (1 byte).

Timing and Control

* Microprogrammed Control :

— The control information is stored in a control memory, and the control memory
is programmed to 1nitiate the required sequence of microoperations

— + Any required change can be done by updating the microprogram in control
memorY’ SlOW Operation Instruction register (IR)

- COHthl Unlt [15] 14 13 12] 11-0 |

* Control Unit = Control Logic Gate + 3
X 8 Decoder + Instruction Register

W
X

Other inputs

3 W o

decoder
7654321
Timing Signal + P "
_ . —»
* Timing Signal = 4 X 16 Decoder + 4- Ol Conor | ol
bit Sequence Counter b oaes
Tis
« Example) Control timing g
) A 4 o
— Sequence Counter is cleared wheny [LR
D3T4 :1 . D3T;1 : SC (_ O decoder
* Memory R/W cycle time > Clock cycle 4 e e
4-bit
time sequence L Giariotr)
\ (80 l«—— Clock

CONTROL UNIT HARDWARE

* Inputs to the control unit come from IR where an instruction read from the memory
unit 1s stored.

A hardwired control is implemented in the example computer using;:

>A 3" 8 decoder to decode opcode bits 12-14 into signals DO, ..., D7,

> A 4-bit binary sequence counter (SC) to count from 0 to 15 to achieve time
sequencing;

>A 4" 16 decoder to decode the output of the counter into 16 timing signals, TO, ...,
T15

> A flip-flop (I) to store the addressing mode bit in IR;

> A digital circuit with inputs—DO, ..., D7, TO, ..., T15, I, and address bits (11-0) in
IR—to generate control outputs supplied to control inputs and select signals of the
registers and the bus.

* Clocking principle: The binary counter goes through a cycle, 0000 — 0001 — 0010
— ... > 1111 — 0000. Accordingly only one of TO, ..., T15 is 1 at each clock cycle, TO
—>T1 > T2 — ... > T15 — TO; all the other timing signals are 0.

* By setting the clear input (CLR) of SC at a clock cycle, say T3, we can achieve a 4-
cycle clock: TO > T1 > T2 —» T3 — TO.

Instruction Cycle

« A computer goes through the following instruction cycle repeatedly:
do

1. Fetch an instruction from memory

2. Decode the instruction

3. Read the effective address from memory if the instruction
has an indirect address

4. Execute the instruction until a HALT instruction is

encountered . . .
 The fetch & decode phases of the instruction cycle consists of the

following microoperations synchronized with the timing signals
(clocking principle).

Timing signal microoperations
TO: AR « PC
T1: IR « M[AR], PC « PC + 1

T2: DO, ..., D7 « Decode IR(12-14), AR « IR(0-11), | « IR(15)

TO: Since only AR is connected to the address inputs of memory, the address of
instruction is transferred from PC to AR.
1. Place the content of PC onto the bus by making the bus selection inputs S2S1S0
=010.
2. Transfer the content of the bus to AR by enabling the LD input to AR
(AR « PC).
T1: The instruction read from memory 1s then placed in the instruction register IR.
At the same time, PC 1s incremented to prepare for the address of the next
instruction.
1. Enable the read input of the memory.
2. Place the content of memory onto the bus by making the bus selection inputs
S2S1S0 = 111. (Note that the address lines are always connected to AR, and we
have already placed the next instruction address in AR.)
3. Transfer the content of the bus to IR by enabling the LD input to IR

(IR « M[AR])).
4. Increment PC by enabling the INR input of PC (PC <~ PC + 1),
T2: The operation code in IR is decoded; the indirect bit is transferred to I; the
address part of the instruction is transferred to AR. (See the common bus skeleton
diagram.)

Similar circuits are used to realize the microoperations at T2.

» At T3, microoperations which take place depend on the type of
instruction. The four different paths are symbolized as follows, where
the control functions must be connected to the proper inputs to
activate the desired microoperations.

Control function Microoperation

D7’IT3: AR < M[AR], indirect memory transfer
D7°I'T3: Nothing, direct memory transfer
D7I'T3: Execute a register-reference instruction
D7IT3: Execute an I/O
instruction

When D7°T3 =1 (At T3 & IR(12-14) # 111), the execution of memory-reference
instructions takes place with the next timing variable T4.

circuit for
instruction fetch. TO — e — =1
This is a part of the
control circuit and

Figure: Control e T = s
= =

demonstrates the
kind of wiring
needed.

Memory unit

%

=amc]

CTommori bus

Start
S «— 0

iF To

b ~p - DpC

1* T1

IR «— M[AR], PCZ «— PCZ + 1

iF TZ2

Decode opcode in IR{(1Z-14)
AR «— IR(O0-11), I «— IR(15]}

Y

(Register or I/0) = 1 H/ﬂxk (Memory-reference) = 0
‘\13'7/

(I/0) = 1 (Register) = 0O (i Indirect) = 1 (Direct) = 0O

NP NN
‘¢ T3 ¢F T3 1¢r T3 ¢r T3
Execute Execute AR <« M[AR] Nothing
/0 Register * *
instruction instruction
a0 S e 0 Execute
memory-reference

instraction
SC «— 0

v

Figure: Flowchart for fetch & decode phases.

REGISTER-REFERENCE INSTRUCTIONS
» The 12 register-reference instructions are recognized by I = 0 and
D7 =1 (IR(12-14) = 111). Each operation 1s designated by the
presence of 1 in one of the bits in IR(0-11). Therefore D7I'T3 =1 =1
1s common to all register-transfer instructions.

15 1211 8]

o 1 1 1 Feglster operations
Symboaol Control Microoperations Description

_ r 8C ¢« 0 (Common to all, done in 1 cycle] Clear 5C
CLA B, AC «— 0 Clear AC
CLE rB,, E « 0 Clear E |
CMA rB, AC « AC Complement AC
CME rb, E « E Complement E
CIR B, AC « shr AC, AC(15) « E, E « AC(0) Circular right
CIL rB, AC « shl AC, AC(0) « B, E <« AC(15) Circular left
INC rB. AC o AC + 1 [ncrement AC
SPA rB, If AC(15)=0 then BC « BC + 1 Skip if positive
SNA rB, If AC(15)=1 then BC « BC + 1 Skip if negative
SZA rB, IT AC=0 then FC « PC + 1 Skip if AC zero
SZE rB, If E=0 then PC « BC + 1 Skip if E zero
HLT rb, Halt computer

S « 0 (€ is a start-stop flip-flop)

Memory Reference Instructions
* Opcode (000 - 110) or the decoded output D1 1 =0, ..., 6) are used to
select one memory-reference operation out of 7.

Symbol Operation Symbolic description
decoder

AND 5., AC « AC "~ M[AR]
ADD [, AC « AC + M[AR], E « C_,,
LDA [AT « MI[AR]
STA D, M[AR] « AC
BUN [}, PC « AR
BSA D, M[AR] « PC, BC « AR + 1
[S7 [M[AR] « M[AR] + 1, If M[BR] + 1 = 0

then PC « PC + 1

Memory Reference Instruction

STA : memory write

R MAR <-AG S0 0 | BSA 135
BUN : branch unconditionally next instruction

DT, : PC<—AR, SC<—0
BSA : branch and save return address 21(return address)

DT : M{AR]<«—PC, AR<—AR+1 Subroutine

DI : PC<—AR SC<0 1 | BUN 135

* Return Address : save return address (135 «~— 21)

e Subroutine Call : — DT, : M[135] <21(PC), 136(AR) <—135+1
[SZ : increment and skip 1f zero DT 136(PC) <—136(AR), SC<—0

DT, : DR<—MAR]
DT : DR<DR+1
DT, : M{AR]<—DR, if (DR =0) then (PC<—PC+1), SC<-0
Control Flowchart :
* Flowchart for the 7 memory reference instruction
— The longest instruction : ISZ(T6)
— 3 bit Sequence Counter

Branch and Save Address (BSA)

20 a BSA 135 210 1] BESA 135
FC = 21| Next instruction 21 Mext instruction
AR = 135 12E 21
13% Subroutine PC = 138 Subroutine
1 B 135 1 BN 135
Memcry, PO, and AR at times Ty Memory and FC after BEA sxecuticn

Subroutine implementation using BSA.

Input-Output and Interrupt

* 5-7 Input-Output and Interrupt
— Input-Output Configuration : Fig. 5-12
 Input Register(/NPR), Output Register(OUTR)

— These two registers communicate with a communication interface
serially and with the AC in parallel

— Each quantity of information has eight bits of an alphanumeric code
 Input Flag(FGI), Output Flag(FGO)
— FGI : set when INPR is ready, clear when INPR is empty

1 : Ready)) .
[0 - Not readvi { — FGO : set when operation is completed, clear when output device is
in the process of printing

— Input-Output Instruction :
* p=D,IT, 4[Address]
* IR(1) =B, «—1R(6-11)
¢ B,- B,; : 61/0 Instruction
— Program Interrupt
* I/O Transfer Modes
— 1) Programmed 1/O, 2) Interrupt-initiated I/0O, 3) DMA, 4) IOP
— 2) Interrupt-initiated I/O (FGI FGO 1 Int.)
— Maskable Interrupt (ION IOF Int. mask)

* Interrupt Cycle :
— During the execute phase, IEN is checked by the control
» IEN =0 : the programmer does not want to use the interrupt,
so control continues with the next instruction cycle
» IEN =1 : the control circuit checks the flag bit, If either flag
set to 1, R (R is the interrupt flip flop) is set to 1
— At the end of the execute phase, control checks the value of R
» R =0 : instruction cycle
» R =1 : Interrupt cycle
* Demonstration of the interrupt cycle : Fig. 5-14

— The memory location at address 0 as the place for storing the return
address

— Interrupt Branch to memory location 1

— Interrupt cycle IEN=0 (/SR Interrupt ION) 0 | 256(return address)
e The condition for R =1 PC= 11 0| BUN 1120
Main Program
1,1 T,(IENX FGI + FGO): R<—1 Interrupt bﬁ:*
 Modified Fetch Phase Here 56
— Modiﬁed Fetch and Decode Phase
Save Return 1120 Interrupt
[Address(PC) at 0 ER(_O i Service Routine
1 MAR/—I(_ (—O 1 BUN 0

[Jump to I(PC— J‘@X—PCJ IEN <0, R<—0,SC<0

Instruction cycle

Fetch and decode
instruction

Interrupt cycle

|

Execute IEN
instruction

R <«— 1

Store return address
in location O
M[O] PC

l

Branch to location 1
PC «— 1

IEN «— O
R<+— O

Design of Basic Computer

» Two basic things are needed: data paths and control signals

A hardwired-control implementation: Stitch together the individual
pieces of the data path.

« The microoperation table provides sufficient information to
implement the circuits for control (wiring various gates).

contraol silignales

L, IMER, CLRER for raegisters
==, =1 . =0 for bhuas
r=ad., wirrite for memorTys
ATIT
contrraol = regilstaers
e Ccombbinatorial
cdracuit IELS T I
datapath (Eas=)
instruction
T|| o7-Do | IR (11 -0) |
P11 -EO for registexr & I 0 state
O Eor meEermeosrr s . ITEXMN. FSI o, F i

| T1is-TO |

cldming signal:s=s

Figure: Where the control resides in the computer.

Input:

1. DO - D7: Decoded IR(14-12)

2. TO - T15 : Timing signals

3. I: Indirect signal

4. IR(0-11)

Output:

1. Control mputs of the nine registers, AR, PC, DR, AC, IR, TR, OUTR, INPR, SC
2. Read and write inputs of memory

3. Signals to set, clear, or complement the flip-flops, IEN, R, etc.

4. Select signals, S2, S1, SO, for common bus

5. Control signals to the AC adder and logic circuit

CONTROL OF REGISTERS AND MEMORY

Systematic Design Procedure

1. For a given register, scan the table of microoperations in the previous slides to
find all the statements involving that gate.

2. Translate the associated control functions to Boolean functions.

3. Convert the Boolean expressions into logic gates.

Example: Control of AR

1. The following is the summary of the register transfers associated
with the address register.

R’TO0: AR « PC load

R’'T2: AR « IR(0-11) load

D7’IT3: AR « M[AR] load

RTO: AR « 0 clear

D5T4: AR « AR + 1 increment

2. The control functions can be combined into the following Boolean
expressions.

LD(AR) =R’'T0 + R’'T2 + D7’IT3

CLR(AR) = RTO

INR(AR) = D5T4

3. The previous Boolean expressions can be converted to the
following logic gates.

From To
bus bus=s

— - AR -

12 12
LD IHMNER LR
Clock

IR

uufg

* In a similar fashion, the control gates for the other registers and memory can be
derived. For example, the logic gates associated with the read input of memory 1s
derived by scanning the microoperation table to find the statements that specify a

read operation. The read operation is recognized from the symbol <— M[AR].
Read =R’T1 + D7°IT3 + (DO + D1 + D2 + D3)T4

Design of Basic Computer

— Register Control : AR
* Control inputs of AR : LD, INR, CLR

e Find all the statements that change the AR From Bus—2— AR | 2o bus

%(_?: in Table. 5-6 ‘ — o

ERENE

* Control functions R7T): AR<—PC
RT : AR<—IR(0—11) RH#
LIXAR) =R 1, +RT+D'IT; | D' IT, : AR<—M[AR]| ©
CIR(AR)=RT, RT: AR<—O .
INR(AR) =D, DT, : AR<—AR+1
— Memory Control : READ
 Control inputs of Memory : READ, WRITE <(M AR] <_ﬂ

« Find all the statements that specify a read operation in Table. 5-6 ——?<—M[AR|—_

Clock

50

L HJ @J

~
e Control function VN
READ=RT+D'IT, +(DQ+D+D,+D)1, J_KQ(t+1]
0o 1 (0]
_ .) . 1 0 1
F/F Control : IEN ZEN < e T =1 0 1
ocC —IEN
PB IEN <1 5. KB
B, [EN <0 s
/ T2

RT, : IEN <—0—

Design of Basic Computer

Bus Control
» Encoder for Bus Selection :
— Sp=X; + X3 T X5+ X5
— 5, =X, X3 T X T X5

x1 =1 corresponds to the bus connection of AR as a source
— Sp=X,+ X5+ X5+ X, P

* X, =1 Bus<«AR=Find? < AR
X, —>
_ . R— \
DT, : PC<—AR Xy > Z15 Multiplexer
DT.: PC<—AR T Encoder *1% Bus Select
X, —— > >15; Input
— Control Function : | =D, +DT. _, " ’
* =1 By« PC=Find?<«PC
NE ory = 9 1R] Inputs Outputs Register selected for bus
« Bus < Fll”ld ’ (_M X1 %2 x3 x4 X5 %6 x7 52 61 B0
T 000000 700 Nore
1 0O00O0CO0O0 001 AR
_ 1. . 0100000 010 PC
* X = LI =RE+DILA+D+D+D)T 19900 o011 IR
_ 0001000 100 AC
Same as Memf)ry Read 0000100 o R
— Control Function : 0000010 110 TR
000000 111 Memory

Design of Accumulator Logic

* Design of Accumulator Logic
— Circuits associated with AC

16
- Adder and 16 Accumulator 16
From DR%’ logic reqgister ﬁ@»
8 circuit (AC) B
From INPR—~» To Bus

LD INR |CLR Clock

Control
gates

Design of Accumulator Logic

Control of AC : Fig. 5-20
 Find the statement that change the AC : AC<-?

16

From adder v , AC

and logic

LD INR
Do

Ts

"\ AND
-
DT : AC<—ACADR N S —
DT : AC<—AC+DR / é_/
. D2 DR

DT : AC<—DR - }
PB,: AC(O—_7) < INPR > LD . D'NL
7’% : AC<—AC Bii— 1
B, : AC<—shr AC, AC(15)<«—FE Br COM
1B, : AC<—shr AC, AC0) <—E / SR
1B, : AC<O0 —— > CLR Br
1B, : AC<—AC+1 — > INR SHL

Bs

Bs

Bi1

Design of Accumulator Logic

— Adder and Logic Circuit : Fig. 5-21 (16 bit)

DR(i) AC(i)
AND

)
c ./
t ADD— I (Fig.2-11
FA)
v DR L>
Ci1

From
INPR

bit() com

raoks

